The Usage Solder paste




Solder paste is a preparation of powdered solder in sticky flux paste primarily used to solder surface mount components onto printed circuit boards. It is also possible to solder through-hole pin in paste components by printing solder paste in and over the holes. The sticky paste temporarily holds components in place; the board is then heated, melting the paste and forming a mechanical bond as well as an electrical connection.

Solder paste is typically used in a stencil printing process by a solder paste printer,[1] in which paste is deposited over a stainless steel or polyester mask to create the desired pattern on a printed circuit board. The paste may be dispensed pneumatically, by pin transfer (where a grid of pins is dipped in solder paste and then applied to the board), or by jet printing (where the paste is ejected onto the pads through nozzles, like an inkjet printer).

After paste printing, the components are placed by a pick-and-place machine or by hand. As well as forming the solder joint itself, the paste carrier/flux must have sufficient tackiness to hold the components while the assembly passes through the various manufacturing processes, perhaps moved around the factory.A Attiny microcontroller placed in solder paste before reflow solderingComponent placement is followed by a reflow soldering process.

The paste manufacturer will suggest a suitable reflow temperature profile to suit their individual paste. The main requirement is a gentle rise in temperature to prevent explosive expansion (which can cause "solder balling"), yet activate the flux. Thereafter, the solder melts. The time in this area is known as Time Above Liquidus. A reasonably rapid cool-down period is required after this time.

For a good soldered joint, the proper amount of solder paste must be used. Too much paste may result in a short circuit; too little may result in poor electrical connection or physical strength. Although solder paste typically contains around 90% metal in solids by weight, the volume of the soldered joint is only about half that of the solder paste applied.[2] This is due to the presence of flux and other non-metallic agents in the paste, and the lower density of the metal particles when suspended in the paste as compared to the final, solid alloy.

As with all fluxes used in electronics, residues left behind may be harmful to the circuit, and standards (e.g., J-std, JIS, IPC) exist to measure the safety of the residues left behind.

In most countries, "no-clean" solder pastes are the most common; in the United States, water-soluble pastes (which have compulsory cleaning requirements) are common.

According to IPC standard J-STD-004 "Requirements for Soldering Fluxes", solder pastes are classified into three types based on the flux types:

Rosin based fluxes are made with rosin, a natural extract from pine trees. These fluxes can be cleaned if required after the soldering process using a solvent (potentially including chlorofluorocarbons) or saponifying flux remover.

Water-soluble fluxes are made up of organic materials and glycol bases. There is a wide variety of cleaning agents for these fluxes.

A no-clean flux is designed to leave only small amounts of inert flux residues. No-clean pastes save not only cleaning costs, but also capital expenditures and floor space. However, these pastes need a very clean assembly environment and may need an inert reflow environment.

Navigation